

CARBON EMISSION CATEGORIES

	DESCRIPTION *Cloud Storage Provider's Point-Of-View	SUB-CATEGORY OF INTEREST
Scope 1 Carbon Emissions	"BURN" Carbon emission due to direct combustion / burning of fuel purchased. (Direct sources of emission)	
Scope 2 Carbon Emissions	"BUY" Carbon emissions associated with purchased electricity/energy. (Indirect sources of emission)	Operational Carbon (Power)
Scope 3 Carbon Emissions	"BEYOND" Carbon emissions due to all the other products, machinery, services, etc. that one uses or powers.	Embodied Carbon

MAJOR CONTRIBUTORS OF DATACENTER IT INFRASTRUCTURE'S CARBON EMISSIONS

*Cloud Storage Provider's Point-Of-View

TOTAL CARBON COST OF OWNERSHIP (TCCO)

Total Cost of Ownership (TCO)

Upfront Cost

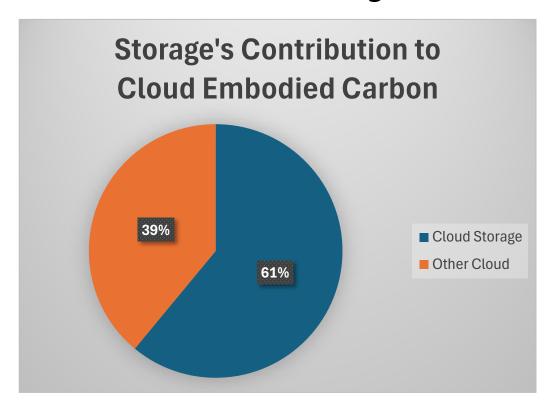
Operational Cost

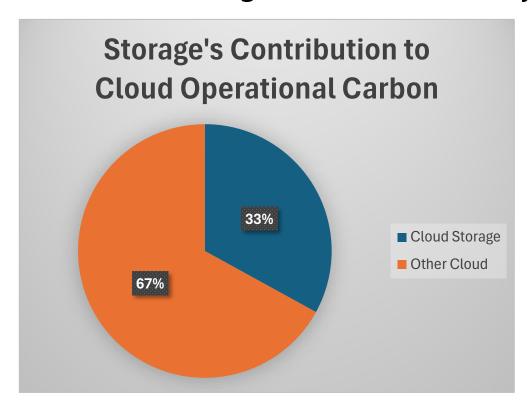
Per unit Ability

Total Carbon Cost of Ownership (TCCO)

Embodied Carbon

Operational Carbon


Per unit Ability


Normalized Carbon Metric example: Net Carbon / Device Capacity

STUDY OF CARBON IN DATACENTER STORAGE

Source: A Call for Research on Storage Emissions (hotcarbon.org)

"Call for Research on Storage Emissions", Microsoft, Carnegie Mellon University

Storage racks and local storage devices — make up 33% of operational and 61% of embodied emissions.

Embodied Carbon is a major problem for Storage Systems/Devices

EMBODIED CARBON IN DATACENTER STORAGE

Where do Embodied Carbon Emissions come from?

Embodied Emissions	CPU	DRAM	SSD	HDD	Other
Compute Rack SSD Rack HDD Rack	4%	40%	30%	0%	26%
SSD Rack	1%	9%	80%	1%	9%
HDD Rack	2%	11%	14%	41%	33%

Table 3: Embodied emission breakdown for Azure racks.

Where do Operational Carbon Emissions come from?

Operational Emissions CPU		DRAM	SSD	HDD	Other
Compute Rack	42%	18%	19%	0%	21%
SSD Rack	32%	8%	38%	1%	21%
Compute Rack SSD Rack HDD Rack	26%	5%	7%	41%	21%

Table 2: Operational emission breakdown for Azure rack types.

OPPORTUNITIES FOR CARBON REDUCTION IN STORAGE

This comprises denser drives resolving IO constraints

Adopt Denser Drives

Design for Longer Lifespan

Archival
Storage Media
is seen to have
lower
Embodied
Carbon impact

Adopt More Archival Media

Circular / Reuse of Storage Systems

Power Efficiency & Interoperability

Helping Operational Carbon

Thank You

Questions?